Photothermal response enhancement in heterogeneous plasmon-resonant nanoparticle trimers

نویسندگان

  • Seyfollah Toroghi
  • Pieter G. Kik
چکیده

The optical response of heterogeneous plasmonic trimer structures composed of a silver nanoparticle dimer and a central gold nanoparticle is investigated analytically and numerically. The plasmon resonance of the silver dimer is controlled through near-field coupling, resulting in plasmon resonance frequency matching of the silver dimer and gold monomer. This coupling condition makes it possible to increase the energy dissipation per unit volume in the gold particle by over two orders of magnitude compared to a single-particle system. It is predicted that pulsed illumination of a trimer consisting of two 80-nm-diameter silver particles and a 10-nm-diameter central gold particle can raise the gold particle temperature by 100 K using a pump fluence as low as 20 nJ/mm2 at a wavelength of 530 nm. This finding may have practical applications in photothermal therapy, fast thermal nonlinear optical modulation, and could enable new fundamental thermal studies at picosecond time scales.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Plasmon-enhanced photothermal response in heterogeneous metallic trimers

Heat generation in plasmonic nanostructures has attracted enormous attention due to the ability of these nanostructures to generate high temperatures in nanoscale volumes using far-field irradiation, enabling applications ranging from photothermal therapy to fast (sub-nanosecond) thermal optical switching. Here we investigate the optical and thermal response of a heterogeneous trimer structure ...

متن کامل

Numerical Analysis of Laser Induced Photothermal Effects using Colloidal Plasmonic Nanostructures

Colloidal noble metal (plasmonic) nanostructures are finding increasing use in a variety of photothermal applications that range from nanoparticle synthesis to bioimaging to medical therapy. In many applications, a pulsed laser is used to excite the plasmonic nanostructures at their plasmon resonant frequency, which results in a peak absorption of incident photons and highly localized (sub-wave...

متن کامل

Heterogeneous plasmonic trimers for enhanced nonlinear optical absorption

A dramatic enhancement of the thermally induced nonlinear optical response in compositionally heterogeneous plasmonic trimers is reported. It is demonstrated numerically that the nonlinear absorption performance of silver nanoparticle dimers under pulsed illumination can be enhanced by more than two orders of magnitude through the addition of only 0.1 vol. % of gold in the dimer gap. The nonlin...

متن کامل

Embedded metal nanoparticles as localized heat sources: An alternative processing approach for complex polymeric materials

Metal nanoparticles were utilized as heating elements within nanofibers to demonstrate an alternative approach to thermally process nanostructured polymeric materials. In the photothermal process, resonant light excites the surface plasmon of the nanoparticle and the absorbed energy is converted into heat due to electron-phonon collisions. This heating is efficient and strongly localized, gener...

متن کامل

Thermal Annealing of Polymer Nanocomposites via Photothermal Heating: Effects on Crystallinity and Spherulite Morphology

Metal nanoparticles embedded within polymeric systems can act as localized heat sources, facilitating in situ polymer processing. When irradiated with light resonant with the nanoparticle’s surface plasmon resonance (SPR), a nonequilibrium electron distribution is generated which rapidly transfers energy into the surrounding medium, resulting in a temperature increase in the immediate region ar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014